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    A 3D higher order Laplacian model is proposed for enhanced wave impact pressure calculation by 
the Moving Particle Semi-implicit (MPS) method. The Laplacian model is derived by meticulously taking 
the divergence of a SPH (Smoothed Particle Hydrodynamics) gradient model and is then utilized for 
discretization of Laplacian of pressure corresponding to the Poisson Pressure Equation (PPE). The 
enhancing and stabilizing effect of the 3D higher order Laplacian model is shown through simulations of 
designed exponentially excited sinusoidal pressure oscillations and a schematic dam break with an 
obstacle. 
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1. INTRODUCTION 
 
   As a Lagrangian gridless method, the MPS 
(Moving Particle Semi-implicit; Koshizuka and Oka, 
1996) has been applied to a wide range of 
engineering applications, including coastal 
hydrodynamic flows. Despite its wide range of 
applicability, the MPS method has a few major 
drawbacks that may substantially affect its 
performance. Non-conservation of momentum 
(Khayyer and Gotoh, 2008), unphysical pressure 
fluctuations (Khayyer and Gotoh, 2009, 2010) and 
numerical instability (Khayyer and Gotoh, 2011) are 
among the major drawbacks associated with the 
MPS method.  
   Through the past couple of years, the authors 
have been working on enhancement of MPS method 
by revisiting the derivation of differential operator 
models and by proposing more accurate, consistent 
schemes, while trying to maintain the simplicity of 
the original method. Khayyer and Gotoh (2008) 
proposed a Corrected version of MPS method, 
abbreviated as CMPS, characterized by an 
anti-symmetric pressure gradient model. Later, a 
Higher order Source term, abbreviated as HS, was 

derived for enhancement of pressure calculation 
(Khayyer and Gotoh, 2009). 
   Another step towards enhancement and 
stabilization of pressure calculation by a 
projection-based particle method is to apply a more 
accurate Laplacian model for discretization of 
Laplacian of pressure in the Poisson Pressure 
Equation (PPE). Khayyer and Gotoh (2010) 
highlighted the importance of the mathematical 
consistency of the Laplacian model and discretized 
source term of the PPE and derived a 2D Higher 
order Laplacian model, abbreviated as HL, for the 
MPS method. In most cases, however, the 
mentioned enhanced particle methods have been 
applied to and verified by 2D calculations. On the 
other hand, most hydrodynamic flows are 
essentially three-dimensional. Hence, development 
of 3D accurate particle methods becomes 
indispensable. 
   The main aim of this study is to develop a 3D 
higher order Laplacian model for enhancement and 
stabilization of pressure field in 3D MPS-based 
simulations. The 3D Laplacian model is derived by 
meticulously taking the divergence of a commonly 
applied SPH (Smoothed Particle Hydrodynamics) 
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gradient model (Monaghan, 1992). It will be shown 
that the Laplacian model derived in a 3D framework 
differs to that corresponding to a 2D one and that 
the same approach can be applied for derivation of 
consistent Laplacian models in the SPH context. 
The enhancing effect of the 3D Laplacian model 
will be shown by simulating designed exponentially 
excited pressure oscillations (Khayyer and Gotoh, 
2010, 2011) and a schematic dam break with an 
obstacle (Kleefsman et al., 2005).  
 
2. DERIVATION OF A 3D LAPLACIAN 
 
   By considering the Laplacian at a target particle 
i as the divergence of the gradient calculated at that 
target particle and by applying the commonly 
applied SPH gradient model (Monaghan, 1992), the 
Laplacian at a target particle i would be formulated 
as (Khayyer and Gotoh, 2010):  
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In 3D Cartesian coordinates, the gradients of ij and 
wij are expressed as:  
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where jiijij    and 

ijij   . 

From Eq. (2): 
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On the other hand: 
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(4) 
 
   Comparing Eqs (3) and (4) with their 
corresponding equations in 2D framework (Eqs 11 
and 12 in Khayyer and Gotoh, 2010), the only 
difference corresponds to the expression of Eq. (4), 
where the effect of space dimensionality is appeared 
in the summation of the terms including second 
partial derivatives of rij with respect to rij. This 
would result in a different expression of Laplacian 
in 3D. From Eqs. (1), (3) and (4): 
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   It should be noted that the only simplification in 
derivation of the above higher order Laplacian 
model (from Eq. 1) corresponds to the considered 
first-order accurate finite difference approximation 
in Eq. (3), and all the other terms are exact 
expressions. By considering the standard MPS 
kernel, the higher order Laplacian in 3D would be 
simplified to: 
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   The 3D CMPS-HS with the above Higher order 
Laplacian will be referred to as 3D CMPS-HS-HL. 
Table 1 summarizes the derived higher order 
Laplacian and its main comprising terms in 2D and 
3D. 
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Table 1 Higher order Laplacian and its comprising terms 
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3. VERIFICATIONS 
 
   The enhancing effect of the 3D higher order 
Laplacian model is demonstrated by performing two 
numerical tests, namely, designed exponentially 
excited sinusoidal pressure oscillations (Khayyer 
and Gotoh, 2010, 2011) and a schematic dam break 
with an obstacle (Kleefsman, 2005). To make the 
comparisons more comprehensible, the fluid is 
considered to be inviscid so that the stabilizing 
effect of the viscous forces will be entirely omitted. 
 
(1) Designed Exponentially Excited Sinusoidal 

Pressure Oscillations  
   Hydrostatic pressure calculations with designed 
exponentially excited sinusoidal pressure 
oscillations have been carried out to verify the 
enhanced performance of 3D CMPS-HS-HL method. 
The calculation conditions are as follows: d0 = 
particle diameter = 1.0E-2 m and t = 1.0E-3 s. The 
water tank is a cube of 0.18 m with the water depth 
being 0.16 m. The modified gravitational 
acceleration is defined as: 
 

)03.0exp()
2

(Sin  
2 T

t

T

t g
ggd        (7) 

 
where gd represents designed external accelerations 
applied to fluid particles; g is the earth’s 
gravitational acceleration (= 9.81 m/s2); t stands 
for the simulation time and T denotes the period of 
sinusoidal term variations (= 0.02 s). 
   Fig. 1 shows the snapshots of water particles 
together with the pressure field at t = 0.245 s. At this 
instant, the spatial distribution of pressure by the 3D 
CMPS-HS-HL method appears to be almost 
consistent with a hydrostatic pressure distribution. 
In contrast, the 3D CMPS-HS method has depicted 
an unphysical spurious pressure distribution 
characterized by several zero-pressure inner fluid 
particles. 

 
Fig. 1 Snapshots of water particles and pressure field 

 


Fig. 2 Time histories of pressure at measuring point A (Fig. 1) 

 

Irregular Initial Distribution of Particles

 
Fig. 3 Time histories of pressure at measuring point A (Fig. 1) 

for irregular initial distribution of particles 
    
   Fig. 2 depicts the time histories of pressure at a 
fixed point (measuring point A in Fig. 1) by 3D 
CMPS-HS and 3D CMPS-HS-HL methods. In spite 
of relatively accurate approximations at the 
beginning of the calculation, the pressure 
calculation by the 3D CMPS-HS has become 
destabilized after a few periods of designed 
oscillations. The 3D CMPS-HS-HL method, on the 
other hand, has provided a notably more accurate 
and stable pressure calculation. 
   Fig. 3 illustrates the time variations of calculated 
pressure at point A when the initial distribution of 
particles is randomly altered and half of fluid 
particles are displaced by  0.05d0 in both x and y 
directions. As a result of an irregular distribution of 
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Fig. 4 Schematic sketch of domain - dam break with obstacle 

 
particles (an initial compression or expansion and 
violation of fluid incompressibility), the pressure 
results by both methods appear to deviate from the 
analytical solution at the beginning of the 
calculation. This deviation tends to be smooth and 
relatively stable in case of the 3D CMPS-HS-HL 
method. In contrast, the pressure trace by the 3D 
CMPS-HS method is initiated by frequent 
large-amplitude unphysical oscillations. After one 
period of oscillation, the results by both methods 
seem to become closer to the analytical solution. 
However, the 3D CMPS-HS results still appear to 
be inaccurate and inconsistent, particularly, in the 
vicinity of the peak and trough points. In contrast, 
the 3D CMPS-HS-HL tends to provide a relatively 
stable and accurate pressure calculation and the 
growth of instabilities tends to be less pronounced 
when the HL scheme is incorporated.  
 
(2) A Schematic Dam Break with an Obstacle  
   Schematic dam break flows have been 
commonly used for the verification of numerical 
methods. An experiment on a schematic dam break 
flow and its impact against an obstacle, carried out 
at the MAritime Research Institute Netherlands 
(MARIN), has been considered as a benchmark test 
for the validation of both 3D particle methods and 
3D grid-based methods. A schematic sketch of the 
calculation domain including the positions of the 
wave height probes and pressure sensors installed in 
the experiment is depicted in Fig. 4. Detailed 
descriptions of the experiment have been provided 
by Kleefsman et al. (2005). For all the calculations 
performed in this section, d0 is set to be 2.0E-2 m, 
resulting in a total number of 215940 particles. 
   Fig. 5 presents a qualitative comparison in 
between 3D CMPS-HS and 3D CMPS-HS-HL by 
illustrating snapshots of water particles together 
with the pressure field at t = 0.49 s. From this figure, 
it is evident that application of the new Laplacian 

 

Fig. 5 Qualitative comparison in between 3D CMPS-HS and 3D 
CMPS-HS-HL at t = 0.49 s - dam break with obstacle 

 
model has significantly reduced the existing 
numerical noise seen in the 3D CMPS-HS snapshot. 
Further, the 3D CMPS-HS-HL has also resulted in a 
more integrated water jet. 
   Fig. 6(a-d) presents a qualitative comparison in 
between simulation and experiment at t = 0.56 s. 
Comparing Fig. 6(a-b) with (c), the 3D 
CMPS-HS-HL has provided a more integrated jet. 
Moreover, from Fig. 6(a) and (c), the height of the 
jet and other macroscopic features of flow, e.g. 
backward curl of the jet towards the incoming flow, 
appear to be in acceptable qualitative agreement 
with the experiment. From Fig. 6(d), the high order 
VOF method of Kleefsman (2005) has resulted in a 
straight fully integrated jet and the backward curl 
has not been reproduced well. 
   Fig. 7(a-b) depicts time histories of 
experimental and calculated pressures at measuring 
points P1 and P5 (Fig. 4). The figure shows the 
step-by-step improvements in pressure calculation 
by incorporating the higher order source term and 
the higher order Laplacian model. Compared with 
the 3D CMPS-HS, the 3D CMPS-HS-HL method 
has resulted in a less-fluctuating, more-accurate 
pressure trace in a better agreement with the 
experiment. In particular, a more consistent 
calculation of the peak pressure rise and declination 
(Fig. 7(a)) is illustrated by the 3D CMPS-HS-HL 
method. The high-order VOF method of Kleefsman 
et al. (2005) has resulted in quite smooth variations 
of pressure. Nevertheless, the pressure traces by this 
high-order grid-based method are characterized by 
some instabilities particularly at the impact instants. 
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Fig. 6 Qualitative comparison in between 3D CMPS-HS, 3D 
CMPS-HS-HL and experiment and VOF (Kleefsman et 
al., 2005) at t = 0.56 s - dam break with obstacle 

 

(a)

(b)

P1

P5

 
 

Fig. 7 Time histories of calculated and experimental 
(Kleefsman, 2005) pressure at measuring points P1 
and P5 (Fig. 4) 

 

Fig. 8 Time histories of water surface height at probe H3 (Fig. 
4) - dam break with obstacle  

 
   Fig. 8 depicts the time variations of water 
surface height at probe H3 and shows the 
step-by-step enhancing effects of the higher order 
source term and the higher order Laplacian in 
providing smoother and more accurate time 
variations of water surface height. 
 
4. CONCLUDING REMARKS 
 
   A 3D higher order Laplacian model is proposed 
for further enhancement of wave impact pressure 
calculation in 3D particle-based simulations. The 
new Laplacian is derived by meticulously taking the 
divergence of a particle-based gradient model. The 
enhancing effect of the 3D Laplacian model is 
shown by simulating designed sinusoidal pressure 
oscillations together with a schematic dam break 
with an obstacle. 
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